Azimuth coding in primary auditory cortex of the cat. II. Relative latency and interspike interval representation.
نویسنده
چکیده
This study was designed to explore a potential representation of sound azimuth in the primary auditory cortex (AI) of the cat by the relative latencies of a population of neurons. An analysis of interspike intervals (ISI) was done to asses azimuth information in the firings of the neurons after the first spike. Thus latencies of simultaneously recorded single-unit (SU) spikes and local field potentials (LFP) in AI of cats were evaluated for sound presented from nine speakers arranged horizontally in the frontal half field in a semicircular array with a radius of 55 cm and the cat's head in the center. SU poststimulus time histograms (PSTH) were made for each speaker location for a 100-ms window after noise-burst onset using 1-ms bins. PSTH peak response latencies for SUs and LFPs decreased monotonically with intensity, and most of the change occurred within 15 dB of the threshold at that particular azimuth. After correction for threshold differences, all latency-intensity functions had roughly the same shape, independent of sound azimuth. Differences with the minimum spike latency observed in an animal at each intensity were calculated for all azimuth-intensity combinations. This relative latency showed a weakly sigmoidal dependence on azimuth that was independent of intensity level >40 dB SPL. SU latency differences also were measured with respect to the latencies of the LFP triggers, simultaneously recorded on the same electrode. This difference was independent of stimulus intensity and showed a nearly linear dependence on sound azimuth. The mean differences across animals for both measures, however, were only significant between contralateral azimuths on one hand and frontal and ipsilateral azimuths on the other hand. Mean unit-LFP latency differences showed a monotonic dependence on azimuth with nearly constant variance and may provide the potential for an unbiased conversion of azimuth into neural firing times. The general trend for the modal ISI was the same as for relative spike latency: the shortest ISIs were found for contralateral azimuths (ISI usually 3 ms) and the longer ones for ipsilateral azimuths (the most frequent ISI was 4 ms, occasionally 5 ms was found). This trend was also independent of intensity level. This suggests that there is little extra information in the timing of extra spikes in addition to that found in the peak PSTH latency.
منابع مشابه
Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences.
This study investigates the degree of similarity of three different auditory cortical areas with respect to the coding of periodic stimuli. Simultaneous single- and multiunit recordings in response to periodic stimuli were made from primary auditory cortex (AI), anterior auditory field (AAF), and secondary auditory cortex (AII) in the cat to addresses the following questions: is there, within e...
متن کاملColumnar and layer-specific representation of spatial sensitivity in mouse primary auditory cortex.
The primary auditory cortex (AI) is implicated in coding sound location, as revealed by behavior-lesion experiments, but our knowledge about the functional organization and laminar specificity of neural spatial sensitivity is still very limited. Using single-unit recordings in mouse AI, we show that (i) an inverse relationship between onset latency and spike count is consistently observed when ...
متن کاملSpatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex.
We compared the spatial sensitivity of neural responses in three areas of cat auditory cortex: primary auditory cortex (A1), the posterior auditory field (PAF), and the dorsal zone (DZ). Stimuli were 80-ms pure tones or broadband noise bursts varying in free-field azimuth (in the horizontal plane) or elevation (in the vertical median plane), presented at levels 20-40 dB above units' thresholds....
متن کاملSpatial sensitivity in field PAF of cat auditory cortex.
We compared the spatial tuning properties of neurons in two fields [primary auditory cortex (A1) and posterior auditory field (PAF)] of cat auditory cortex. Broadband noise bursts of 80-ms duration were presented from loudspeakers throughout 360 degrees in the horizontal plane (azimuth) or 260 degrees in the vertical median plane (elevation). Sound levels varied from 20 to 40 dB above units' th...
متن کاملAzimuth coding in primary auditory cortex of the cat. I. Spike synchrony versus spike count representations.
The neural representation of sound azimuth in auditory cortex most often is considered to be average firing rate, and azimuth tuning curves based thereupon appear to be rather broad. Coincident firings of simultaneously recorded neurons could provide an improved representation of sound azimuth compared with that contained in the firing rate in either of the units. In the present study, a compar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 80 4 شماره
صفحات -
تاریخ انتشار 1998